
Cluster Computing 2 (1999) 107–116 107

Efficient layering for high speed communication:
the MPI over Fast Messages (FM) experience

Mario Lauria a, Scott Pakin b and Andrew Chien c

a Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0114, USA
b Department of Computer Science, University of Illinois at Urbana-Champaign, 1304 W. Springfield Avenue, Urbana, IL 61801, USA

c Science Applications International Corporation Chair Professor, Department of Computer Science and Engineering University of California,
San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0114, USA

We describe our experience of designing, implementing, and evaluating two generations of high performance communication libraries,
Fast Messages (FM) for Myrinet. In FM 1, we designed a simple interface and provided guarantees of reliable and in-order delivery, and
flow control. While this was a significant improvement over previous systems, it was not enough. Layering MPI atop FM 1 showed that
only about 35% of the FM 1 bandwidth could be delivered to higher level communication APIs. Our second generation communication
layer, FM 2, addresses the identified problems, providing gather-scatter, interlayer scheduling, receiver flow control, as well as some
convenient API features which simplify programming. FM 2 can deliver 55–95% to higher level APIs such as MPI. This is especially
impressive as the absolute bandwidths delivered have increased over fourfold to 90 MB/s. We describe general issues encountered in
matching two communication layers, and our solutions as embodied in FM 2.

1. Introduction

Dramatic advances in low-cost computing technology
have combined to make clusters of PCs an attractive al-
ternative to massively parallel processor (MPPs) architec-
tures. Leveraging on mass-market volumes of production,
the humble PC has benefitted from huge and ever increas-
ing investments in the development of its key components
(CPU, memory, disks, I/O buses, peripherals), while at the
same time MPP manufacturers are coming to terms with a
contraction of the market for multi-million dollar machines.

However a supercomputer is more than a collection of
high performance computing nodes; it is in the way its
component parts are integrated that the real challenge of
a parallel machine design lies. In comparing a cluster ar-
chitecture with the custom design of a contemporary MPP,
it is in the interconnection technology that the latter has
the largest edge over the former. For example, the Cray
T3D achieves communication latencies of about 2 µs and a
peak bandwidth of about 300 MB/s, the IBM SP2 of about
30 µs and 40 MB/s, respectively, whereas the typical values
for a classical Ethernet-interconnected cluster are 1 ms and
1.2 MB/s, respectively.

The new high speed Local Area Networks (LANs)
available today (ATM [4], FDDI [11], Fibrechannel [1],
Myrinet [2]) offer comparable hardware latency and band-
width to the proprietary interconnect found on MPPs. The
introduction of these enabling technologies shifts the focus
of the MPP versus cluster comparisons from performance
to more general considerations of system scalability, relia-
bility, affordability, and software availability.

New hardware technologies are only part of the com-
munication picture; delivering performance to applications
requires communication software capable of delivering the

network performance. Fast network hardware alone is not
sufficient to speed up communication [20]. Existing com-
munication protocols have been developed to address re-
quirements of robustness in the presence of unreliable trans-
port and large network latencies, along with operating sys-
tem controlled access to network interfaces. As a conse-
quence, they are characterized by a large processing over-
head, which prevents them from fully exploiting the per-
formance of the new networks (figure 1).

Over the past few years, many research projects have
studied the design of high performance communication
software (Fast Messages (FM) [6,12,21], Active Messages
(AM) [30], U-Net [31], VMMC-2 [10], PM [29], BIP [26]).
In the Fast Messages project, we built two generations of
systems optimized to deliver communication performance
to the application. The first generation, FM 1.0, was based
on our studies of essential communication guarantees (reli-
able, in-order communication with flow control) and tuned
for realistic message-size distributions (mostly short mes-
sages). FM 1.0 achieved dramatically more usable commu-
nication performance, reducing the half-power message size

Figure 1. Theoretical bandwidth over 100 Mbit/s and 1 Gbit/s Ethernet
assuming a fixed 125 µs protocol processing overhead.

 Baltzer Science Publishers BV



108 M. Lauria et al. / Efficient layering: MPI over FM

for the Myrinet network by nearly two orders of magnitude,
from over four thousand bytes to 54 bytes. We present the
results of our initial experience with the implementation of
user-level libraries on top of FM 1.x, which expose the crit-
ical issues and the important services required in matching
two adjacent layers of the communication hierarchy.

For the second generation Fast Messages system, we
used the insights gained from using FM 1.x to optimize the
FM API and maximize the portion of FM performance de-
livered to the applications. By building high-level libraries
such as MPI on top of FM and analyzing the resulting per-
formance of the entire software stack, we found that a num-
ber of inefficiencies were created at the interface between
libraries. The performance losses caused by the interface
are remarkable, limiting network performance to a small
fraction (<10%) of the hardware.

Fast Messages 2.x eliminates these interface problems,
enabling over 90% of FM’s performance to be delivered to
higher level API’s such as MPI. We describe the new ele-
ments of the FM 2.x API: gather/scatter, interlayer schedul-
ing, receiver data pacing and their impact on usable perfor-
mance. The interface efficiency obtained with the FM 2.x
interface is over 80% for almost all message sizes, even for
four byte messages, and peaks to 98%, a dramatic improve-
ment. The implementation of MPI-FM atop the FM 2.x
API achieves 91 MB/s peak bandwidth versus the 92 MB/s
available on FM. The performance increase is even more
impressive considering the more than fourfold increase of
absolute performance of FM 2.x with respect to FM 1.x as a
result of the migration from a Sparc to an x86 architecture.

The remainder of the paper is organized as follows. In
section 2 we review the results that motivate the design of
FM. In section 3 we present the FM 1.x API and discuss its
strengths and weaknesses. In section 4 we present the FM
2.x API and describe its features. Related work is surveyed
and contrasted with our work in section 5. Finally, we make
a few concluding remarks in section 6.

2. Motivation for Fast Messages designs

The design of Fast Messages is motivated by the wealth
of knowledge about message size distributions, the char-
acteristics of traditional network protocols, and studies of
high performance networks in parallel computers. The core
of these results is summarized below.

2.1. Network traffic characteristics

From the first use of computer networks, scientists have
studied the size, the frequency, and distributions of both for
network traffic. Such studies consistently show that the ma-
jority of traffic (by packet count) consists of short messages.
This property is remarkably stable across networks, time,
and applications [13,18]. In a study of traffic on an Eth-
ernet connecting diskless workstations to file servers [13],
Gusella found that the majority of packets were less than

576 bytes; of these 60% were 50 bytes or less. In another
study [18], Kay et al. measured the TCP and UDP traf-
fic on a FDDI LAN of Unix workstations in a university
computer science department. They found that TCP mes-
sage sizes are small: over 99% of packets are less than
200 bytes. UDP traffic was slightly larger, with 86% of
messages being less than 200 bytes. NFS-generated UDP
packets accounted for 90% of the traffic measured. Con-
tinuous studies at the SUNY-Buffalo campus also chronicle
the predominance of short messages. For a wide variety
of networks, across a wide range of time, packet average
sizes of 300–400 bytes were recorded.

The prevalence of short messages implies that if good
network performance is to be accessible, it must be deliv-
ered to short messages. This is in contrast to many gigabit
network projects that required megabyte-sized messages to
deliver gigabit bandwidth. In short, overhead must be min-
imized, as at high network speeds, there is little spooling
time available to mask network overhead.

2.2. Legacy protocols

Widely used Internet protocols such as TCP [25] and
UDP [24] provide widespread interoperability and two lev-
els of functionality – reliable byte streams and unreliable
datagrams. However, these protocols incur significant over-
heads [8], essentially preventing the delivery of network
performance to short messages. For example, the fastest
implementations of UDP achieve per packet overheads of
≈ 125 µs. This implies that for typical packet size distrib-
utions (<256 bytes), bandwidths of no greater than 2 MB/s
could be sustained. Of course, the overheads for reliable
protocols such as TCP are even greater.

2.3. High performance communication layers

To identify crucial performance factors in high speed
communication software, we undertook empirical studies
of communication layers inside parallel computers. These
studies identified the key guarantees a communication layer
must provide to avoid incurring a large software overhead
at higher levels of the system. Our study of CM-5 Active
Messages (CMAM) [14] measured the dynamic instruction
count of the CMAM assembly code and identified the over-
head contributions of the range of guarantees provided by
the communication layer (in-order delivery, buffer manage-
ment, fault tolerance). Because the network of the CM-5
provided none of these features, the software overhead can
be considered the “cost” of each feature on the CM-5. In
a highly optimized messaging layer like the CMAM up
to 50–70% of the software messaging costs are a direct
consequence of the gap between user requirements such as
in-order and reliable delivery, end-to-end flow control, and
actual network features like arbitrary delivery order, finite
buffering, unreliable communication. For example, in one
case (16-word messages, 4-word packet size, multi-packet
delivery) 216 out of a total of 397 cycles are spent for buffer



M. Lauria et al. / Efficient layering: MPI over FM 109

Figure 2. Active Messages on the CM-5: breakdown of overhead for
16-word messages

management (148 cycles), in-order delivery (21 cycles) and
fault tolerance (47 cycles) (figure 2, left).

These results imply that the careful balance between
functionalities offered and processing overhead is crucial
in the design of high performance communication software.
In gigabit/s networks the design constraints to deliver us-
able performance at small message sizes are even smaller.
These lessons were crucial in the design of two generations
of Fast Messages systems.

3. Fast Messages 1.x

The design of Fast Messages 1.0 for Myrinet provided
an opportunity to apply the lessons of the networking com-
munity – low overhead to deliver performance to short mes-
sages, and a simple interface with the right guarantees to
deliver performance to the application. By providing a few
key services – buffer management, reliable and in-order de-
livery – the FM programming interface allows for a leaner,
more efficient implementation of the higher level commu-
nication layers.

The first workstation cluster implementation of Fast
Messages (FM) project [22] was built on Sparc 20 worksta-
tions interconnected with a Myrinet network. On this net-
work FM achieves a short message latency of only 14 µs
and a peak bandwidth of 17.6 MB/s, or 75% of the avail-
able 23 MB/s of I/O bandwidth when using programmed
I/O. As a result of the design focus on short message per-
formance, the value of N1/2 is 54 bytes, with a bandwidth
of 17.5 MB/s available for messages as small as 128 bytes.

3.1. Design of the Illinois Fast Messages 1.x

The FM 1.1 API consists of three functions FM send
(.), FM send 4(.), and FM extract(.) as shown
in table 1. FM send(.) and FM send4(.) inject mes-
sages into the network. FM has an Active Message style
interface that differs from a pure message passing paradigm
by not having explicit receives. Instead, each message in-
cludes the name of a handler, which is a user-defined func-
tion that is invoked upon message arrival to process the
carried data.

The FM extract() primitive is used to service com-
munication on the receive side, checking for incoming mes-
sages and executing the corresponding handlers. The user
needs to call this primitive frequently to ensure the prompt
processing of incoming communication in the host. How-
ever it does not need to be called for the network to make

Table 1
The primitives of the FM 1.1 API.

Function Operation

FM send 4(dest,handler,i0,i1,i2,i3) Send a four word message
FM send(dest,handler,buff,size) Send a long message
FM extract() Process received messages

progress. FM provides buffering so that senders can make
progress while their corresponding receivers are computing
and not servicing the network.

The FM interface is similar to the Active Messages
model [30] from which it borrows the notion of message
handlers. However, there are a number of key differences:
the FM API offers stronger guarantees (in particular in-
order delivery), a uniform handling of messages with re-
spect to size, and there is not a request-reply scheme. Also,
in contrast to Active Messages, where the send calls im-
plicitly poll the network, FM’s send calls do not normally
process incoming messages, enabling a program to control
when communications are processed.

In choosing which service guarantees to include during
the design phase of FM, we gave careful consideration to
the performance of the communications stack as a whole,
not of FM as an isolated messaging layer. If a messaging
layer’s guarantees are too weak (i.e., they do not provide
the functionality that applications expect), other messaging
layers built on top will need to supply the missing func-
tionality, incurring additional overhead in the process. On
the other hand, if a messaging layer’s guarantees are too
strong (i.e., they provide more functionality than is gener-
ally needed), the messaging layer’s common-case perfor-
mance may be needlessly degraded. Analysis of the liter-
ature and our ongoing studies to support fine-grained par-
allel computing [5,14–16] have led to the conclusion that
a low-level messaging layer should provide the following
key guarantees:

• reliable delivery,

• in-order delivery, and

• control over scheduling of communication work (decou-
pling).

As mentioned in the previous section, studies of commu-
nication software costs [14] show that implementing guar-
antees like reliable and in-order delivery can increase com-
munication overhead by over 200%. To reduce these costs
careful consideration was given to exploiting hardware fea-
tures. We found that by taking advantage of Myrinet fea-
tures like very low error rate, absence of buffering in the
network fabric, deterministic routing, link-level flow con-
trol by means of back-pressure, we only needed to add flow
control and buffer management to provide reliable and in-
order delivery. FM provides these, and its performance
demonstrates that these guarantees need not be costly.

Figure 3(a) shows that the addition of buffer manage-
ment and flow control is not substantially degrading per-
formance. The different curves represent the performance



110 M. Lauria et al. / Efficient layering: MPI over FM

(a)

(b)

Figure 3. FM 1.x overhead: (a) overhead break-down; (b) overall perfor-
mance.

measured with the simplest code needed to operate the link
DMAs, then with a few more lines to move data across
the I/O bus, and finally with the flow management code
added. The transport of data across the I/O bus is on the
critical path and adds to the overhead, while flow control if
properly designed can be overlapped with other operations.
Similarly, the further addition of buffer management does
not add substantial overhead, and leads to the final version
of the FM code (figure 3(b)). A more detailed analysis of
the FM 1.x design choices is reported in [22].

3.2. Evaluation of FM 1.x

The real measure of the effectiveness of a communica-
tion library is the level of performance that can be actually
delivered to an application. Given the low-level nature of
the FM interface, typical applications are language runtime
supports or user level libraries. We selected MPI and BSD
sockets as test applications, and experimented extensively
with the former.

Figure 4 shows that the initial version of MPI-FM had
poor performance, failing to deliver more than 35% of the
underlying FM bandwidth. It was clear that the FM 1.x
interface lacked several key features required for efficient
layer composition. So the analysis of the MPI-FM ineffi-
ciencies turned into a study on how to design an API that
makes it easy to deliver performance (see [19] for details).

The overhead originates from a number of memory-to-
memory copies of the data taking place at the interface
between MPI-FM and FM. The service guarantees we built
into FM allowed a streamlined and thin implementation of
the body of MPI-FM, for example making unnecessary the
source buffering, timeout, and retry that would be otherwise
required to provide reliable communication. But inefficien-

(a)

(b)

Figure 4. MPI-FM initial performance compared to FM: (a) absolute; (b)
as a percentage of FM.

cies arose at the interface between layers, surprisingly for
different reasons for each direction of transfer.

First, FM adopted its basic API from Active Message
(AM) [30], and thus accepted (and presented) data as a sin-
gle contiguous buffer. While sending, this approach charges
the upper layers with the task of assembling/disassembling
of messages. In many cases, this incurred an additional step
(and copy) in performing common packet header operations
for encapsulating, checksumming, etc.

Similarly to the send side, on the receive side the mes-
sage is handed over to the handler as a single contiguous
buffer. This required that the entire message had to be re-
ceived into a staging buffer before the handler could start
processing it and possibly copying it to the final destination.
Such a scheme forced FM to perform an additional copy
even when the availability of the destination buffer (i.e.,
preposted MPI receive) made it theoretically unnecessary.

Second, FM 1.x allowed the receiving process to decide
when to service the network, however, it was unable to
control the quantity of data presented at that time (all the
pending packets were processed). In high speed networks,
data can easily be transmitted far faster than a receiver can
accept it. The presentation of the data before the appli-
cation was prepared to accept induced additional layers of
buffering and data copies.

In conclusion, the implementation of MPI-FM showed
that the FM API was lacking flexibility in two crucial areas:

• presentation of data across layer boundaries,

• control over interlayer scheduling.

Addressing these shortcomings required some funda-
mental changes to the API, and motivated the design of
a new version of FM.



M. Lauria et al. / Efficient layering: MPI over FM 111

4. Fast Messages 2.x

4.1. Design of Illinois Fast Messages 2.x

The FM 2.x API retains the service guarantees of FM
1.x, and adds support for gather-scatter, layer interleaving,
and receiver flow control. The primary vehicle for these
features is the addition of the stream abstraction, in which
messages are viewed as byte streams and primitives are
provided for the piecewise manipulation of data, both on
the send and the receive side.

In the new FM 2.x interface (table 2) the old FM send
(.) primitive is replaced by FM send piece(.), which
can be called as many times as desired to send segments
of a message of arbitrary size. Message boundaries are
still honored (using the FM begin message(.) and
FM end message(.) calls), but in the new API a mes-
sage may be gathered from discontiguous regions of mem-
ory and marshalled into the network. Mirroring this abstrac-
tion on the receive side is the FM receive() primitive,
that can be called an arbitrary number of times from within
a handler.

FM’s streaming interface is an innovative way to deliver
performance to higher-level messaging layers such as MPI.
The idea is to enable a messaging layer to process a message
as it arrives, without having to wait for the entire message
to arrive before delivering it. Figure 5 shows the stages of
the FM pipeline.1 Note how the first part of the message is
delivered before the last part of the message has even been
passed to FM. As an added bonus, the streaming interface
provides an elegant scatter/gather mechanism for handling
noncontiguous data without extra memory copies.
FM receive(), the function a handler uses to receive

data from a message, copies the next set of bytes from the
message to a given buffer. There are no limits on the num-
ber of bytes copied per invocation, as long as the total is no
greater than the size of the original message. Specifically,
the sequence of FM receive()s need not match the se-
quence of FM send piece()s originally used to send the
message. Furthermore, FM receive() has blocking se-
mantics; the next instruction in the handler will not execute
until all the bytes specified are copied. This makes coding
simple and natural.

In the first implementation of the streaming interface,
which shipped with HPVM 1.0, lightweight threads were
implemented with an ad hoc scheme that involved source
code translation. The programmer was obligated to run
his code through a “streamify” script that rewrote han-
dlers so that they would explicitly save their state, switch
control to a scheduler, and restore their state when con-
trol was switched back. While this scheme yielded good
performance – the handlers and the scheduler did no more
work than absolutely necessary – and was portable across
operating systems and architectures, there were a number
of drawbacks:

1 “User buffer → FM (host)” and “host → NIC” run concurrently, but
not in parallel. Hence, they are not drawn in a pipelined manner.

Table 2
The primitives of the FM 2.x API.

Function Operation

FM begin message(dest, size, handler) Start of a message to be sent
FM send piece(stream, buf, bytes) Send a chunk of message
FM end message(stream) End of a message to be sent
FM receive(stream, buf, bytes) Get a chunk of message
FM extract(bytes) Process received messages

• The streamify script was C-specific.

• Because streamify was not a complete C parser,
but rather employed simple pattern-matching rules for
rewriting, it imposed a number of limitations on han-
dler coding style.

• Programmers had to help streamify identify han-
dlers and variable declarations by including FM-specific
#pragma directives at various places in their code.

In short, streamify was a big nuisance to program-
mers. For the latest generation of the streaming interface,
we completely redesigned the implementation to eliminate
the need for streamify. We benchmarked Win32 fibers
(lightweight threads) and found that, while fiber creation
time is high (26 µs on a 200 MHz Pentium Pro), fiber-
switching time is extremely low (0.2 µs on the same plat-
form). Hence, we made FM initialize() preallocate
a large number of fibers and give each fiber a pointer to the
state that is shared between itself and the fiber scheduler
(i.e., FM extract()). The entry point of each fiber is a
wrapper function that alternates between calling a handler
and returning control to FM extract(). The shared state
is used by FM extract() to point the wrapper function
to the current handler and to the head of the receive queue.
It is also used by the wrapper function to pass the handler’s
return code back to FM extract(). FM receive() is
now an ordinary function (as opposed to a placeholder that
gets rewritten by streamify), and there are no longer any
coding style limitations on handlers. Furthermore, because
fiber switching is so fast, the performance of the streaming
interface is no worse than it was in the previous generation.

Thanks to the new design, the key problems identified
in studies of FM 1.x are remedied as follows.

Gather/scatter. By performing a sequence of FM send
piece(.) calls, the user can compose a message on

the fly using any number of pieces, each of arbitrary size.
Similarly, a receiver can employ a handler with a sequence
of FM receive() calls, allowing the efficient decompo-
sition of a message into any number of pieces. Each call
composes/extracts as many bytes as desired, and the num-
ber and sizes of the pieces need not match on the two sides.
Examples include header attachment/removal in MPI-FM,
and in protocol encapsulation in general (e.g., IP and TCP
headers in TCP/IP hierarchy).

Layer interleaving. A second important benefit of the
stream abstraction is the controlled interleaving of the FM



112 M. Lauria et al. / Efficient layering: MPI over FM

Figure 5. Pipelining within the FM layer (not drawn to scale).

and the application layers on the receive side. While every-
thing runs within one user process, there is one thread
for the application, in which the FM primitives are ex-
ecuted (including FM extract), and one for each of the
application-specific handlers. The typical message process-
ing scenario within the handler is illustrated below:

int myHandler(FM_stream *str,
unsigned sender)

{
struct header myHeader;
int msglen;

/* get the header */
FM_receive(&myHeader, str,

sizeof(struct header));

msglen = myHeader.length;

if (myHeader.littlemsg)
/* short message */
FM_receive(littlebuf++, str,

msglen);
else
/* long message */
FM_receive(findBuf(msglen), str,

msglen);

return FM_CONTINUE;
}

The first FM receive() call is used to extract just
the message header (FM receive() is executed within
the application/FM thread). Then the handler reads the
header fields, identifies the messages, and selects the buffer
into which to copy the message payload (the handler is
executed within its own thread). Finally, another call to
FM receive() with the selected buffer passed as second
argument extracts the payload directly into the buffer (FM
thread).

The interleaving makes possible the elimination of stag-
ing buffers for incoming messages. For example, in MPI-
FM, using FM 1.x, we could not deliver an incoming mes-
sage directly into its destination buffer, specified by the user

through a pre-posted MPI receive call. The reason for this
limitation was that incoming messages were handled by
FM, while the buffer management occurred within MPI-
FM, and the required exchange of information between the
two layers (identity of message in one direction, pointer to
the appropriate buffer in the other) was absent.

Receiver flow control. The FM 2.x interface also provides
receiver flow control, allowing the receiver to control the
rate at which data is processed from the network. This
can eliminate network overruns of buffer pools, avoiding
memory copies, and for some protocols, message discard-
ing. In many applications, the ability to intentionally delay
the extraction of the message until a buffer becomes avail-
able can simplify the buffer management. For example,
receiver flow control enables zero-copy transfers in a sig-
nificantly larger number of cases for both our Socket-FM
and MPI-FM implementations.

Transparent handler multithreading. One of the differ-
ences between FM 1.x and FM 2.x is that handler execution
is no longer delayed until the entire message has arrived,
rather it is started as soon as the first packet is received.
Since packets belonging to different messages can be re-
ceived interleaved, the execution of several handlers can
be pending at a given time. As it extracts each packet from
the network, FM 2.x schedules the execution of the associ-
ated pending handler (figure 6). By having the interleaved
packet reception transparently drive the handler execution,
a number of benefits are achieved.

First, the handler multithreading combined with the
stream abstraction allows arbitrary-sized data chunks to be
composed/received, without any concern for packet bound-
aries. Second, handler multithreading plus packetization
not only simplifies resource management, it can also in-
crease performance by increasing effective pipelining in
many cases. On a long message the handler can be process-
ing one part of the message while the sender is still send-
ing the rest. And the interleaving means that one arbitrarily
long message from one sender does not block other senders.

The FM 2.x interface cleanly hides the physical pack-
etization and handler multithreading by offering a clean
sequential view of message reception. Except for the pos-
sibility of being descheduled on a FM receive() call, a
handler can be written as if the entire message had already



M. Lauria et al. / Efficient layering: MPI over FM 113

Figure 6. The interleving of packets drives the handler thread scheduling
on the receiver.

Figure 7. FM 2.1 performance on a 300 MHz Pentium II.

been received. Moreover, the FM 2.x interface provides a
logical thread for each message, avoiding explicit manage-
ment of state sharing/isolation for complex messages.

4.2. Evaluation of FM 2.x

Figure 7 shows the performance achieved by FM 2.1 on
a 300 MHz Pentium II: 9 µs minimum latency, 92 MB/s
peak bandwidth, with N1/2 ≈ 256 bytes. These values
represent high absolute performance, compared to MPP in-
terconnect performance and internal memory bandwidth.
Similar to FM 1.x, a design attentive to short message per-
formance shows in the N1/2 values and in the rapid growth
of the bandwidth curve.

The graphs of figure 8 show the improved efficiency
of MPI-FM on top of FM 2.x, proving that the FM 2.x
API can deliver a high percentage of its measured perfor-
mance. MPI-FM achieves up to 98% of the FM bandwidth,
with a minimum latency of 13 µs and a peak bandwidth of
91 MB/s. The key enhancements of FM 2.x (gather-scatter,
layer interleaving, and receiver flow control) enable MPI on
FM 2.x to eliminate many buffer copies, and avoid buffer
pool overruns, delivering the underlying FM performance
to the application. To further demonstrate FM 2.x’s capabil-
ities, we have implemented other APIs, including Shmem
Put/Get and Global Arrays (both global address space inter-
faces). FM and the high-level user level interfaces are in-
cluded in the High Performance Virtual Machine (HPVM),
a complete suite of software tools for high performance
computing on scalable clusters of PCs. The latest version
of HPVM used for the reported measurements (HPVM 1.2)
is available on our web site (http://www-csag.ucsd.
edu).

(a)

(b)

Figure 8. MPI-FM 2.0 performance compared to FM 2.0: (a) absolute;
(b) as a percentage of FM.

5. Related work

Fast Messages is not the only approach to delivering
high-performance communication by efficient protocol lay-
ering. Most related efforts involve either optimized im-
plementations of heavyweight protocols, high-performance
network hardware, or other high-performance low-level
messaging layers. We now discuss projects in each of these
categories.

High performance communication layers. Active Mes-
sages (AM) [30] has been one of the first realizations
of high performance messaging layers. The AM project
started as a communication library for the CM-5, and to-
day some of its new implementations retain some of the
features of the original version, like the specialized low-
latency primitives for short transfers. A problem with spe-
cialized primitives is that they often fall short of the practi-
cal message size of overlying applications. For example, in
the implementation of MPI-FM we found that the minimum
length of the MPI header is 24 bytes (6 words), while low-
latency primitives in Active Messages libraries are available
for up to n words, where the value of n is 4, 5 or another
integer depending on the specific AM release.

From the same group is Fast Sockets [27], an implemen-
tation of the Berkeley Sockets on top of Active Messages.
One of the issues explored by Rodrigues at al. in their
work is the elimination of unnecessary copies at the layer
interface. The copy avoidance technique of receive posting
in Fast Sockets is similar to what FM 2.x achieves with the
layer interleaving, in which the user handler collaborates
with FM to direct the incoming data directly into the des-
tination buffer. The main difference is that the FM model



114 M. Lauria et al. / Efficient layering: MPI over FM

supports packetization and thus works with messages of
arbitrary size.

The interplay between packetization and pipelining has
been one of the main foci of the Trapeze project at Duke
University. Trapeze [33] is a messaging layer for Myrinet
networks developed for network memory and other dis-
tributed operating system services. It uses pipelining to
reduce the latency of page-sized transfers across the net-
work. The cut-through delivery technique of Trapeze adds
a level of pipelining by allowing overlapped transfers of
packet chunks, in addition to the traditional inter-packet
overlapping. A number of design choices aimed at opti-
mizing page transfers within the kernel (the use of DMA
transfers on both sides, of interrupt-based notification) dif-
ferentiate Trapeze from the FM user-level design.

Another high performance user-level messaging layer is
U-Net [31]. Developed originally on a network ATM, it
provides buffer management, demultiplexing in hardware
but no flow control, and thus data can be lost due to over-
flow. Contrary to FM, U-Net and other messaging layers
try to avoid the passage of data through kernel memory by
performing a DMA transfer directly into the user buffer.
The disadvantage of such a feature is that the user must
declare in advance the regions of memory to be used for
communication, so to allow the library to permanently pin
them down.

In our experience such a scheme seems to lack the flex-
ibility needed in building user-level libraries. In the case
of MPI-FM, the buffers are provided by the MPI applica-
tion and their location is not in general known in advance.
A new version of U-Net called U-Net/MM [32] is under
development which addresses this limitation by including a
TLB on the network interface and coordinating its opera-
tion with the operating system’s virtual memory subsystem.
This mechanism would allow network buffer pages to be
pinned and unpinned dynamically and thus messages can be
transferred to and from any part of the application’s address
space.

A different kind of API is offered by the VMMC-2 [10].
Derived by the Shrimp project, VMMC-2 implements the
notion of remote virtual memory mapping, in which a map-
ping is established between regions of memory of different
machines. Once set up the mapping, stores into local pages
of such regions are automatically propagated to the associ-
ated pages on remote nodes. There is little experience yet
on the use of such abstraction to support layers of commu-
nication software.

In some respect similar to FM is the Real World Comput-
ing Partnership’s PM [29]. Like FM, PM runs on clusters of
Myrinet-connected workstations and performs flow control
and buffer management. The main difference with FM is in
the optimistic flow control mechanism, and variable-sized
packets.

BIP [26] is another messaging layer developed for
Myrinet at the Ecole Normale Superieure de Lyon. It has a
more traditional message passing interface, with both block-
ing and non-blocking send/receive primitives, and offers

unreliable and in-order delivery communication. It has been
specifically designed to support standard message passing
libraries like MPI and PVM, for which its interface repre-
sents a good match.

Optimized heavyweight protocols. One approach to fast
communication that a number of researchers have taken is
to start with traditional, heavyweight, kernel-mode protocol
stacks and tune the implementations to deliver more per-
formance. Frequently, these projects focus on the TCP and
UDP stacks, but other protocols have been optimized as
well. One of the largest performance penalties that occurs
when sending large messages is memory copying, which
occurs at each level in the protocol stack. (In TCP, the
other big penalty is computing the TCP checksum, but this
cost can be eliminated in some modern network interfaces
by performing the checksum in hardware.) Hence, the most
common optimization technique is to reduce the amount of
data copying by sharing buffers across layers.

This is the approach taken by fbufs [9], which avoids
data-touching overheads by remapping pages of data from
one domain to another instead of copying. The Solaris
operating system does something similar, but uses copy-
on-write semantics to prevent wayward applications from
corrupting data that are still “live” in the protocol stack [7].
Container shipping [23] and other protocol-stack optimiza-
tions [3] expand upon the basic fbufs technique. XTP [28]
takes a different approach: It improves performance by
providing high-level features such as multicast and priority
control in a new, alternative heavyweight protocol.

The problem with all of these schemes, and one of the
reasons that Fast Messages does not attempt a similar solu-
tion to the protocol layering performance problem, is that
they perform poorly on small messages. And, for realis-
tic message sizes – generally less than 256 bytes – mem-
ory copying is much less of a bottleneck than the various
constant-time overheads [17]. Even the overhead to switch
between user mode and kernel mode is too high for forth-
coming networks. For perspective, note that on a gigabit
network, about 1 KB of data can arrive in the time it takes
just to switch modes.

6. Conclusions

We have described our experience with the implemen-
tation of user-level libraries on top of the FM library. The
main finding is that overheads generated at the interface
between layers can substantially reduce the communication
performance seen by the applications. Our work exposes
the need for a design of the low-level programming inter-
face that specifically targets the efficient matching between
layers, and identifies the crucial services required for such
matching.

The gather/scatter functionality allowed a streamlined
header attachment/removal process which previously re-
quired a copy of the transferred data. Layer interleaving



M. Lauria et al. / Efficient layering: MPI over FM 115

enabled the direct deposition of message data into the des-
tination buffer rather than in a staging buffer, thus saving
another copy. The redesigned API of our second genera-
tion communication layer, FM 2.0, adds these services in
a flexible and performance-conscious way. Other benefits
of the interface include receiver pacing, transparent handler
multithreading, a simple and clean view of message recep-
tion, and a pipelining scheme that is the first to provide true
end-to-end pipelining, from user buffer to user buffer.

The validity of our new design is shown by the peak
bandwidth of a high-level library like MPI-FM that went
from an initial 20% to the final 98% of the bandwidth made
available by the FM layer. Such a result is even more
relevant in view of the fourfold increase of absolute FM
bandwidth from 17.6 MB/s to 92 MB/s, consequent to the
migration form a Sparc to a x86 architecture.

Acknowledgements

The research described in this paper is supported in part
by DARPA orders #E313 and #E524 through the US Air
Force Rome Laboratory Contracts F30602-96-1-0286 and
F30602-97-2-0121. Support from Microsoft, Intel Corpora-
tion, Hewlett-Packard, Myricom, Platform Computing, and
Tandem Computers is also gratefully acknowledged. An-
drew Chien is supported in part by NSF Young Investigator
Award CCR-94-57809. Scott Pakin is supported by an In-
tel Foundation Graduate Fellowship. Mario Lauria has been
supported in part by a NATO-CNR Advanced Science Fel-
lowship.

References

[1] T.M. Anderson and R.S. Cornelius, High-performance switching
with Fibre Channel, in: Digest of Papers Compcon 1992 (IEEE
Computer Society Press, Los Alamitos, CA, 1992) pp. 261–268.

[2] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic and W.-K. Su, Myrinet – a gigabit-per-second local-
area network, IEEE Micro 15(1) (February 1995) 29–36. Available
from http://www.myri.com/research/publications/
Hot.ps.

[3] J.C. Brustoloni and P. Steenkiste, Effects of buffering seman-
tics on I/O performance, in: Proceedings of the 2nd USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), Seattle, Washington (October 1996) pp. 277–291. Avail-
able from http://www.cs.cmu.edu/afs/cs/user/jcb/
papers/osdi96.ps.

[4] CCITT, SG XVIII, Report R34, Draft Recommendation I.150: B-
ISDN ATM functional characteristics (June 1990).

[5] A. Chien, J. Dolby, B. Ganguly, V. Karamcheti and X. Zhang, Sup-
porting high level programming with high performance: The Illinois
Concert system, in: Proceedings of the 2nd International Workshop
on High-level Parallel Programming Models and Supportive Envi-
ronments (April 1997) pp. 15–24.

[6] A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane,
L. Giannini and J. Prusakova, High performance virtual ma-
chines (HPVM): Clusters with supercomputing APIs and per-
formance, in: Proceedings of the 8th SIAM Conference on
Parallel Processing for Scientific Computing, Minneapolis, MN
(March 1997). Available from http://www-csag.ucsd.edu/
papers/hpvm-siam97.ps.

[7] H.-K.J. Chu, Zero-copy TCP in Solaris, in: Proceedings of the
USENIX Annual Technical Conference, San Diego, CA (January
1996) pp. 253–264. Available from http://playground.sun.
com/∼hkchu/zc-usenix.ps.

[8] D.D. Clark, V. Jacobson, J. Romkey and H. Salwen, An analysis of
TCP processing overhead, IEEE Communications Magazine 27(6)
(June 1989) 23–29.

[9] P. Druschel and L.L. Peterson, Fbufs: A high-bandwidth cross-
domain transfer facility, in: Proceedings of the 14th ACM Sym-
posium on Operating Systems Principles (SOSP), Asheville, NC
(December 1993) pp. 189–202. ACM SIGOPS, ACM Press.
Available from ftp://ftp.cs.arizona.edu/xkernel/
Papers/fbuf.ps.

[10] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis and K. Li, VMMC-
2: efficient support for reliable, connection-oriented communica-
tion, in: Proceedings of Hot Interconnects V, IEEE (August 1997).
Available from http://www.cs.princeton.edu/shrimp/
Papers/hotIC97VMMC2.ps.

[11] Fiber-distributed data interface (FDDI) – Token ring media access
control (MAC), American National Standard for Information Sys-
tems ANSI X3.139-1987, American National Standards Institute
(July 1987).

[12] L.A. Giannini and A.A. Chien, A software architecture for global ad-
dress space communication on clusters: Put/Get on Fast Messages,
in: Proceedings of High-Performance Distributed Computing Con-
ference (1998). Available from http://www-csag.ucsd.edu/
papers/hpdc7-giannini.ps.

[13] R. Gusella, A measurement study of diskless workstation traffic on
Ethernet, IEEE Transactions on Communications 38(9) (September
1990) 1557–1568.

[14] V. Karamcheti and A. Chien, Software overhead in messaging lay-
ers: Where does the time go? in: Proceedings of the 6th Symposium
on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS-VI), San Jose, CA, Association for Comput-
ing Machinery (October 1994) pp. 51–60. Available from http://
www-csag.ucsd.edu/papers/asplos94.ps.

[15] V. Karamcheti and A.A. Chien, A comparison of architectural sup-
port for messaging on the TMC CM-5 and the Cray T3D, in: Pro-
ceedings of the 22nd Annual International Symposium on Computer
Architecture (ISCA ’95), Santa Margherita Ligure, Italy (June 1995)
pp. 298–307. Available from http://www-csag.ucsd.edu/
papers/cm5-t3d-messaging.ps.

[16] V. Karamcheti, J. Plevyak and A.A. Chien, Runtime mechanisms
for efficient dynamic multithreading, Journal of Parallel and Dis-
tributed Computing 37(1) (1996) 21–40. Available from http://
www-csag.ucsd.edu/papers/rtperf.ps.

[17] J. Kay and J. Pasquale, The importance of non-data touching
processing overheads in TCP/IP, in: Proceedings of the ACM
Communications Architectures and Protocols Conference (SIG-
COMM), San Francisco, CA (September 1993) pp. 259–269. Avail-
able from http://www-csl.ucsd.edu/CSL/pubs/conf/
sigcomm93.ps.

[18] J. Kay and J. Pasquale, Profiling and reducing processing overheads
in TCP/IP, in: IEEE/ACM Transactions on Networking (December
1996). Available from http://www-cse.ucsd.edu/users/
pasquale/Papers/profTCP96.ps.

[19] M. Lauria and A. Chien, MPI-FM: High performance MPI on work-
station clusters, Journal of Parallel and Distributed Computing 40(1)
(January 1997) 4–18. Available from http://www-csag.ucsd.
edu/papers/jpdc97-normal.ps.

[20] M. Liu, J. Hsieh, D. Hu, J. Thomas and J. MacDonald, Distributed
network computing over Local ATM Networks, in: Supercomputing
’94 (1995).

[21] S. Pakin, V. Karamcheti and A.A. Chien, Fast Messages: Effi-
cient, portable communication for workstation clusters and MPPs,
IEEE Concurrency 5(2) (April–June 1997) 60–73. Available from
http://www-csag.ucsd.edu/papers/fm-pdt.ps.

[22] S. Pakin, M. Lauria and A. Chien, High performance messaging
on workstations: Illinois Fast Messages (FM) for Myrinet, in:



116 M. Lauria et al. / Efficient layering: MPI over FM

Proceedings of the 1995 ACM/IEEE Supercomputing Confer-
ence, Vol. 2, San Diego, CA (December 1995) pp. 1528–1557.
Available from http://www-csag.ucsd.edu/papers/
myrinet-fm-sc95.ps.

[23] J. Pasquale, E.W. Anderson and K. Muller, Container Shipping:
Operating system support for I/O-intensive applications, IEEE
Computer 27(3) (March 1994) 84–93.

[24] J. Postel, User datagram protocol, RFC 768, Internet Engineer-
ing Task Force (August 1980). Available from ftp://ds.
internic.net/rfc/rfc768.txt.

[25] J. Postel, Transmission control protocol, RFC 793, Internet Engi-
neering Task Force (September 1981). Available from ftp://ds.
internic.net/rfc/rfc793.txt.

[26] L. Prylli and B. Tourancheau, Protocol design for high performance
networking: a Myrinet experience, Technical Report N. 97-22, LIP,
Ecole Normale Superieure de Lyon (July 1997). Available from
http://www-bip.univ-lyon1.fr/.

[27] S. Rodrigues, T. Anderson and D. Culler, High-performance
local-area communication using Fast Socket, in: Proceedings of
the USENIX 1997 Technical Conference, San Diego, CA (USENIX
Association, January 1997). Available from http://now.cs.
berkeley.edu/Papers2/.

[28] W.T. Strayer, B.J. Dempsey and A.C. Weaver, XTP: The XPress
Tranfer Protocol (Addison-Wesley, Reading, MA, 1992).

[29] H. Tezuka, A. Hori and Y. Ishikawa, PM: A high-performance com-
munication library for multi-user parallel environments, Technical
Report TR-96-015, Tsukuba Research Center, Real World Comput-
ing Partnership (November 1996). Available from http://www.
rwcp.or.jp/papers/1996/mpsoft/tr96015.ps.gz.

[30] T. von Eicken, D. Culler, S. Goldstein and K. Schauser, Active
Messages: a mechanism for integrated communication and compu-
tation, in: Proceedings of the International Symposium on Computer
Architecture (1992) pp. 256–266.

[31] T. von Eicken, A. Basu, V. Buch and W. Vogels, U-Net: A
user-level network interface for parallel and distributed computing,
in: Proceedings of the 15th ACM Symposium on Operating Systems
Principles (December 1995) pp. 40–53. Available from http://
www2.cs.cornell.edu/U-Net/papers/sosp.pdf.

[32] M. Welsh, A. Basu and T. von Eicken, Incorporating memory man-
agement into user-level network interfaces, in: Hot Interconnects V,
Stanford, CA (August 1997). Available from http://www.cs.
cornell.edu/U-Net/papers/hoti97.ps.

[33] K.G. Yocum, J.S. Chase, A.J. Gallatin and A.R. Lebeck, Cut-
through delivery in Trapeze: an exercise in low-latency messaging,
in: HPDC-6, Portland, OR (August 1997).

Mario Lauria is currently a postdoctoral re-
searcher in the Department of Computer Science
and Engineering at the University of California,
San Diego. Mario Lauria received his Laurea de-
gree in EE and his Ph.D. in EE&CS from the Fed-
erico II University of Naples, Italy, in 1992 and
in 1997, respectively, and an M.S. in CS from
the University of Illinois at Urbana-Champaign
in 1996. After a year as a lecturer at the Uni-
versity of Naples and a year as a postdoc at the

University of Illinois on a NATO-CNR Science Fellowship, he is con-
tinuing at the UCSD his research activity in the Concurrent Systems
Architecture Group, of which he is a member since 1994. His re-
search interests include network architectures, hardware/software sup-
port for high speed communications in clusters, cluster architectures for
HPC.
E-mail: mlauria@csag.ucsd.edu

Scott Pakin is in the doctoral program in computer
science at the University of Illinois at Urbana-
Champaign. He is also a member of Andrew
Chien’s Concurrent Systems Architecture Group.
His research interests include high-speed commu-
nication architectures for workstation clusters and
coordinated scheduling. He received his MS in
computer science from the University of Illinois at
Urbana-Champaign in 1995 and his BS in math-
ematics/computer science from Carnegie Mellon

University in 1992.
E-mail: pakin@cs.uiuc.edu

Andrew A. Chien is the Science Applications In-
ternational Corporation Chair Professor in the De-
partment of Computer Science and Engineering
at the University of California, San Diego, and
is affiliated with the National Computational Sci-
ence Alliance (NCSA) and the National Partner-
ship for Advanced Computational Infrastructure
(NPACI). From 1990 to 1998, Andrew was a fac-
ulty member at the University of Illinois, Depart-
ment of Computer Science, and remains an ad-

junct faculty member there. Andrew’s research involves networks, net-
work interfaces, and the interaction of communication and computation
in high performance systems. His work also involves compilation tech-
niques for high performance object systems. Professor Chien received
his B.S. degree in EE from the Massachusetts Institute of Technology
in 1984. He also received his M.S. and Ph.D. degrees in computer
science from M.I.T. in 1987 and 1990, respectively. He is the author
of over seventy research papers and book chapters on networks, archi-
tecture, compilers and programming languages. He has served on nu-
merous program committees as well as program chairman for the 1999
ACM SIGPLAN Symposium on the Principles and Practice of Paral-
lel Programming, Program Vice Chair of the 1995 IEEE International
Parallel Processing Symposium, and as an Associate Editor for IEEE
Transactions on Parallel and Distributed Systems. Professor Chien was
awarded the National Science Foundation Young Investigator Award in
1994. In 1995, he received the C.W. Gear Outstanding Faculty Award
and, in 1996, he received the Senior Xerox Award for Outstanding Re-
search.
E-mail: achien@cs.ucsd.edu


